Posted on

64-bit Ubuntu Raspberry Pi 3 Arm Server Image Now Available

This morning there is some great news for fans of the popular Raspberry Pi 3 single board computer, looking to run 64-bit Ubuntu Arm Server on their board!

 

The Ubuntu team, with support from Arm, has released a ready-made image that can be written to an SD Card and directly booted on a Raspberry Pi 3B or 3B+, with no configuration necessary.  We were able to give this image a test, and although it is technically considered a beta, it seems most everything is working and all of the standard functionality one would expect from Ubuntu Server intact!

 

You can download the image here:  http://cdimage.ubuntu.com/releases/18.04/beta/

How to Install Ubuntu on the Raspberry Pi 3

Once the image is downloaded, it needs to be extracted, and can then be written to an SD Card.  Of course, the higher the read and write speed of the SD Card, the better overall system performance will be.

 

After getting the image written and inserted in to the Pi, take note that the first boot may take a few minutes while the OS goes through a few setup routines.

 

A quick run through the system showed the basic console hardware requirements of HDMI, USB, and Ethernet all worked out of the box, as well as WiFi.  SSH is enabled and working, and normal software installation and updating via ‘apt’ package management is working great.  As an added bonus, the image comes with ‘cloud-init’ setup to automatically expand the partition on the SD Card to the maximum capacity of the card, generate SSH keys, configure networking for the LXD container runtime (which is also preinstalled), and finally force a password change upon first login to the system.

 

All said, this means the Ubuntu Arm Server image is ready to use immediately upon writing the SD Card and booting the Pi!

 

In the past, it was technically possible to bootstrap a system using a custom built kernel and an Ubuntu rootfs, then add Pi-specific firmware and drivers.  After that you had to add users, manually install networking, and add even basic system utilities.  That process required in-depth knowledge of system installation and configuration, and was not something most users could tackle on their own.  However, thanks to the efforts of the Ubuntu Arm team in creating this new ready-made image, no advanced knowledge of the Linux build process is required, and even casual Raspberry Pi users can be up and running easily!

 

One final thing to keep in mind, is that this image is fully intended to be a 64-bit Ubuntu Arm Server platform!  Use cases such as File or Print servers, DNS, MySQL or other database servers, web front-end caching, or other lightweight services all make sense for this platform.  It can also be used for installation and testing of Aarch64 software, developing and compiling Arm64 applications, exploring containers, or even production workloads where possible!  Small, distributed compute workloads, IoT services, Industrial Internet of Things, environmental monitoring, remote compute capacity in non-traditional settings, or many other uses cases are all possible.  While a desktop *can* be installed, due to the limited memory on the Raspberry Pi, only a lightweight desktop like LXDE or XFCE will truly work, with both Mate and Gnome quickly running out of memory, moving to Swap, and then slowing the system to a crawl.   Even so, desktop performance in this image is not optimized, so sticking with the intended use of this image as a Server OS makes the most sense.

 

In summary, thanks to a collaborative effort from Arm and the Ubuntu teams, the community now has a ready-made Raspberry Pi 3B(+) 64-bit Ubuntu Arm Server image!
Posted on

ARM Server Update, Summer 2018

Continuing our quarterly ARM Server update series, it is now Summer 2018 so it is time to review the ARM Server news and ecosystem updates from the past few months!  This blog series only covers the ARM Server highlights, but for more in-depth ARM Server news be sure to check out the Works on Arm Newsletter, delivered every Friday by Ed Vielmetti!

Looking at our recent blog posts, the most important headline seems to be the rumored exit from the business by Qualcomm.  Although, at the moment, this has not been confirmed, if true it would be a major setback for ARM Servers in the datacenter.  The Qualcomm Centriq had been shown to be very effective by CloudFlare for their distributed caching workload, and had been shown by Microsoft to be running a portion of the Azure workload as well.

However, just as Qualcomm is rumored to be exiting, Cavium has released the new ThunderX2 to general availability, and several new designs have now been shown and are listed for sale.  The ThunderX2 processor is a 32-core design that can directly compete with Xeons, and provides all of the platform features that a hyperscaler would expect.

Finally, in software news, Ubuntu has released it’s latest 18.04 Bionic Beaver release, which is an LTS version, thus offering 5 years of support.  As in the past, there is an ARM64 version of Ubuntu, which should technically work on any UEFI standard ARM Server.  Examples include Ampere X-Gene servers, Cavium ThunderX servers, Qualcomm, Huawei, HP Moonshot, and AMD Seattle servers.

As always, make sure to check back for more ARM Server and Datacenter industry news, or follow us on Twitter for daily updates on all things ARM, IoT, single board computers, edge computing, and more!

 

Posted on

Prototype Raspberry Pi Cluster Board

The first samples of the miniNodes Raspberry Pi Cluster Board have arrived, and testing can now begin!

Thanks to the very gracious Arm Innovator Program, miniNodes was able to design and build this board with the help of Gumstix!  The design includes 5 Raspberry Pi Compute Module slots, an integrated Ethernet Switch, and power delivered to each node via the PCB.  All that is required are the Raspberry Pi CoM’s, and a single power supply to run the whole cluster.

We are in the process of validating the hardware, and ensuring proper functionality, but hope to launch the board soon!

mininodes-raspberry-pi-cluster-board

Posted on

Report: Qualcomm Looking to Exit ARM Server Processor Business

Recently, Bloomberg ran an article claiming that Qualcomm was seeking to close down or find a buyer for it’s ARM Server processor, the Centriq.  While the report has not been publicly confirmed by the company, if true, this would be welcome news to Cavium who just launched their ThunderX2 ARM Server processor.  Ampere could also benefit from this, as they are currently preparing to launch an updated X-Gene ARM Server processor based on the Applied Micro deisgn.

It would be a loss for the ARM Server ecosystem as a whole though, as the Centriq was well received in the press and reviews showed that the chip offered superior performance, lower power consumption, and excellent network throughput.

Here’s hoping this report is false!

 

Posted on

miniNodes ARM Innovators Program Interview

The full Arm Innovators Program interview is now posted, and we are proud to be highlighted by Arm for our innovations in the Arm Server ecosystem!

As you can see, we are currently prototyping a Raspberry Pi Cluster PCB that will hold 5 Raspberry Pi Computer on Module (CoM) boards, with a power input and ethernet switch built in.

This Raspberry Pi Cluster Board will allow the Docker, Kubernetes, OpenFasS, Minio, and other cluster projects to easily develop, test, and build their software in a cheap and convenient way, with no cabling mess.  Home automation, IoT, and hardware hacking are other potential uses for the board.

We’re still a few weeks away from launching, but keep watching this space as we will be sure to make an announcement as soon as it is ready!

mininodes-arm-innovator

Posted on

Fedora IoT Edition Approved

The Fedora Council has authorized a new Fedora Edition (as opposed to a Spin), dedicated to IoT devices and functionality!  Fedora ARM developer Peter Robinson is heading up the effort, congratulations to him!  He has information available on his blog located here:  https://nullr0ute.com/2018/03/fedora-iot-edition-is-go/, and there is also an official Ticket capturing the Approval located here:  https://pagure.io/Fedora-Council/tickets/issue/193

The Wiki is just getting built out now, so there is not a whole of information on it quite yet, but keep checking back as it takes shape:  https://fedoraproject.org/wiki/Objectives/Fedora_IoT

 

Posted on

ARM Server Update, Spring 2018

Continuing on with our quarterly updates to the ARM Server ecosystem, as usual there is quite a bit of news to report on!  Let’s dive right in to the analysis!

The Qualcomm Centriq continues to make headlines, with the first design win recently announced.  Hatch, a cloud gaming company, has chosen the Centriq 2400 to power it’s cloud gaming platform.  More information is available here:  https://www.forbes.com/sites/tiriasresearch/2018/02/20/hatch-qdt-cloud-gaming/

Qualcomm is also in the news for another reason as well.  Broadcom, another chip maker, has launched a hostile bid to takeover Qualcomm, although Qualcomm has thus far held off their unwanted pursuit, and is attempting to remain independent.  Consolidation in the chip maker space has been picking up in recent years, with the NXP purchase of Freescale, Intel buying Altera, Macom purchasing Applied Micro, and many more.

Which leads to the next news in the industry:  Macom had recently quietly sold off the Applied Micro assets to a secretively named buyer, known only as Project Denver Holdings.  However, they have now formed a new organization, called Ampere, who will continue on with the development and marketing of the X-Gene line of ARM Server processors.  More info on Ampere can be found here:  https://amperecomputing.com/

Finally, Linaro’s 96Boards team has brought to market a development workstation conforming to their Enterprise Edition standards.  The newly launched workstation features a 24-core Socionext Synquacer SoC, plus a hard drive, memory, and video card to round out the system.  It is currently listed for sale at $1,250, so it is not cheap, but it does fulfill a niched that has been underserved in the market.  It can be purchased here:  http://www.chip1stop.com/web/USA/en/search.do?dispPartIds=SOCI-0000001

 

Posted on

ARM Server Update, Fall 2016

Two major conferences devoted to the ARM ecosystem and technologies were recently held, ARMTechCon and Linaro Connect. Some new product announcements were revealed, and of course ARM Servers were front and center.

Linaro Connect featured the announcement and release of the new 96Boards IoT edition, a new smaller platform specifically designed for secure Internet of Things applications. There were also conference talks on the kernel, storage, Android, OCP, and more. But of course lots of attention was placed on the ARM Server updates, with the latest information on OpenStack, Xen, and processor technology announced. Linaro focuses on Linux on ARM of course, from both a hardware and software perspective.

ArmTechCon featured a more diverse set of topics, such as automotive, robotics, Internet of Things, and others. New application specific processors devoted to secure automotive and autonomous driving, network interconnects, and GPU’s were announced as well.

 

Posted on

ARM Server Linux Update, June 2016

As usual, a lot has changed in just a short time since our last update.  Here are some of the highlights from industry news.

First and foremost, the RaspberryPi 3 has continued to be the most popular ARM single board computer.  It now includes WiFi and Bluetooth, and the official Raspbian operating system has been upgraded to include support for the new features.  While it has a 64-bit processor, for the time being it still uses a 32-bit operating system.

Just a few days ago, we got some detail on the Cavium ThunderX2 processor that is forthcoming.  This is an enterprise-grade processor that will have 54 cores and support up to 100gb of ethernet bandwidth.  It will deliver 2x to 3x the performance of the current ThunderX processor, and should be able to compete head-to-head with Xeon’s in many workloads.

Finally, the Pine64 has been shipping in volume now, with most Kickstarter backers having received their boards.  The Pine64 is based on a 64-bit Allwinner A64 processor, which is not the most powerful around, but it sets a new low-price for 64-bit ARM hardware.  At just $15 for the entry level Pine64, the price of 64-bit ARM hardware has dropped from $3,000 to $15 in the course of about 1 year.  Talk about rapid innovation!

Posted on

ARM Server Linux Update, March 2016

It has been a few months since our last ARM Server update, and as usual, a lot has changed in just a short time!

The biggest and most important news is the launch of the Raspberry Pi 3, freshly upgraded to a quad-core 64-bit ARM processor from Broadcom, whereas all previous Raspberry Pi’s have been based on 32-bit processors. With 8 million units sold, the Raspberry Pi is by far the most popular ARM single board computer, so the move to a 64-bit processor will potentially add millions of units to the 64-bit ARM ecosystem.

In January, the AMD Opteron A1100 officially launched, which is also a 64-bit model. It is available in 3 different SKU’s with varying core count and speeds, and AMD is arguably the biggest name to launch an ARM Server SOC thus far.

The LeMaker Cello is a new board based on the 96Boards Enterprise Edition specification, utilizing one of the AMD Opteron processors. It has gigabit ethernet, DDR3 memory, SATA, and USB 3.0, so connectivity and data throughput should be excellent.

Finally, as part of the latest 96Boards Reference Software Platform, both Debian and CentOS are now supported for install, and a single 4.4 Kernel run the DragonBoard, HiKey, and HuskyBoard.

So there you have it. Just a few short months, and lots of change has happened in the ARM Server ecosystem (as usual)!